Error Bounds and Hölder Metric Subregularity
نویسندگان
چکیده
The Hölder setting of the metric subregularity property of set-valued mappings between general metric or Banach/Asplund spaces is investigated in the framework of the theory of error bounds for extended real-valued functions of two variables. A classification scheme for the general Hölder metric subregularity criteria is presented. The criteria are formulated in terms of several kinds of primal and subdifferential slopes.
منابع مشابه
Error Bounds and Metric Subregularity
Necessary and sufficient criteria for metric subregularity (or calmness) of set-valued mappings between general metric or Banach spaces are treated in the framework of the theory of error bounds for a special family of extended real-valued functions of two variables. A classification scheme for the general error bound and metric subregularity criteria is presented. The criteria are formulated i...
متن کاملNonlinear Metric Subregularity
In this article, we investigate nonlinear metric subregularity properties of set-valued mappings between general metric or Banach spaces. We demonstrate that these properties can be treated in the framework of the theory of (linear) error bounds for extended real-valued functions of two variables developed in A. Y. Kruger, Error bounds and metric subregularity, Optimization 64, 1 (2015) 49–79. ...
متن کاملLocal convergence of Levenberg–Marquardt methods under Hölder metric subregularity
We describe and analyse Levenberg–Marquardt methods for solving systems of nonlinear equations. More specifically, we first propose an adaptive formula for the Levenberg–Marquardt parameter and analyse the local convergence of the method under Hölder metric subregularity. We then introduce a bounded version of the Levenberg–Marquardt parameter and analyse the local convergence of the modified m...
متن کاملMetric Subregularity and Calmness for Nonconvex Generalized Equations in Banach Spaces
This paper concerns a generalized equation defined by a closed multifunction between Banach spaces, and we employ variational analysis techniques to provide sufficient and/or necessary conditions for a generalized equation to have the metric subregularity (i.e., local error bounds for the concerned multifunction) in general Banach spaces. Following the approach of Ioffe [Trans. Amer. Math. Soc....
متن کاملHölder Metric Subregularity with Applications to Proximal Point Method
This paper is mainly devoted to the study and applications of Hölder metric subreg-ularity (or metric q-subregularity of order q ∈ (0, 1]) for general set-valued mappings between infinite-dimensional spaces. Employing advanced techniques of variational analysis and generalized differentiation, we derive neighborhood and pointbased sufficient conditions as well as necessary conditions for q-metr...
متن کامل