Error Bounds and Hölder Metric Subregularity

نویسندگان

  • Alexander Y. Kruger
  • Lionel Thibault
چکیده

The Hölder setting of the metric subregularity property of set-valued mappings between general metric or Banach/Asplund spaces is investigated in the framework of the theory of error bounds for extended real-valued functions of two variables. A classification scheme for the general Hölder metric subregularity criteria is presented. The criteria are formulated in terms of several kinds of primal and subdifferential slopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Bounds and Metric Subregularity

Necessary and sufficient criteria for metric subregularity (or calmness) of set-valued mappings between general metric or Banach spaces are treated in the framework of the theory of error bounds for a special family of extended real-valued functions of two variables. A classification scheme for the general error bound and metric subregularity criteria is presented. The criteria are formulated i...

متن کامل

Nonlinear Metric Subregularity

In this article, we investigate nonlinear metric subregularity properties of set-valued mappings between general metric or Banach spaces. We demonstrate that these properties can be treated in the framework of the theory of (linear) error bounds for extended real-valued functions of two variables developed in A. Y. Kruger, Error bounds and metric subregularity, Optimization 64, 1 (2015) 49–79. ...

متن کامل

Local convergence of Levenberg–Marquardt methods under Hölder metric subregularity

We describe and analyse Levenberg–Marquardt methods for solving systems of nonlinear equations. More specifically, we first propose an adaptive formula for the Levenberg–Marquardt parameter and analyse the local convergence of the method under Hölder metric subregularity. We then introduce a bounded version of the Levenberg–Marquardt parameter and analyse the local convergence of the modified m...

متن کامل

Metric Subregularity and Calmness for Nonconvex Generalized Equations in Banach Spaces

This paper concerns a generalized equation defined by a closed multifunction between Banach spaces, and we employ variational analysis techniques to provide sufficient and/or necessary conditions for a generalized equation to have the metric subregularity (i.e., local error bounds for the concerned multifunction) in general Banach spaces. Following the approach of Ioffe [Trans. Amer. Math. Soc....

متن کامل

Hölder Metric Subregularity with Applications to Proximal Point Method

This paper is mainly devoted to the study and applications of Hölder metric subreg-ularity (or metric q-subregularity of order q ∈ (0, 1]) for general set-valued mappings between infinite-dimensional spaces. Employing advanced techniques of variational analysis and generalized differentiation, we derive neighborhood and pointbased sufficient conditions as well as necessary conditions for q-metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015